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Electronic is everywhere 
more than 80 Processors to 

control various functions 
(ABS, ..., Infotainment, ...) 
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Major Problem so far 

„Spot defects“, „random defects“ during 

manufacturing 

[http://www.icyield.com] 

Short 
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Nanoscale Integration 

Potential for integrating highly complex innovative 

products into single chip (SoC) or package (SiP) 

Problems 

Soft errors 

Parameter variations 

cf. Borkar, IEEE Micro 2005 
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Soft Errors 

Caused by 

Alpha particles, cosmic radiation  

Measures 

SER (Soft Error Rate) given in 

FIT (Failure in Time) 

1 FIT = 1 failure in 109 hours  (  114,155 years) 

Example 

SER for Processor with embedded SRAM is 50,000 FIT  

(1 soft error every 2 years) 

But: Multiprocessor system with 100 chips has 1 failure per week 
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SRAM bit SER with 

error-correcting code 

Technology (nm) 
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SRAM bit SER 

Logic SER (data) 

Logic SER (simulation) 

[Baumann, IEEE Design&Test 2005]  

SER for Latches/Flipflops in Random Logic 
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Parameter Variations 

Static variations 

Systematic 

Random 

Dynamic variations 

Variations over time (aging) 
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Example: Random Dopant Fluctuations 

Threshold voltage Vth 

Determined by the 

concentration of dopant 

atoms in the channel 

Only a few dopant atoms 

in nano scale transitors 

Law of large numbers is 

no longer valid, 

quantum effects must be 

considered 
[Borkar, IEEE Micro 2005]  
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Dynamic Parameter Variations 

„Power density“ in a 

Processor chip 

Problems 

Hot spots 

Varying supply voltage 

... 

y 

W/cm2 

x 

[Borkar, IEEE Micro 2005]  
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Consequences 

a 
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Most parameter variations result in timing variations 

1ns 

1ns 

2ns 

2ns 

2ns 

Traditional view: 

nominal or worst 

case delay 

Now: probability 

density functions 

(PDF) for delay 
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Variation-Aware and Robust Design 

Statistical timing analysis 

More and more commercial 

EDA support 

Redundancy 

Hardware 

Time 

Information 

Algorithmic 

Self-calibrating architectures 
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Example 

[D. Ernst et al., IEEE Micro, 2004] 

Razor 
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Razor – Error Rates 

[D. Ernst et al., IEEE Micro, 2004] 
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Robust Systems 

Classical fault tolerant architectures  

(Self-checking circuits, TMR, …)  

New self-calibrating, self-adaptive solutions 

System 

Robust 

implementation 
compensates 

static and/or 
dynamic 

parameter 

variations and/or 
soft errors 

You‘re kidding guys  
??????? 



02.02.20

17 Erlangen – January 31, 2011 

Challenges 

Design validation/verification must take into account 

fault tolerance and robustness properties 

(‚robustness checking“) 

How much robustness is left after manufacturing? 

Fault tolerant yield 

Quality binning 
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Self-Checking Circuits 

CUT 
Checker Error 

Indication 

Encoded 

Outputs Encoded 

Inputs 
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Self-Checking Circuits 

An error is detected, if and only if it produces an erroneous 

output outside the output code (non code word) 

Input Code 

Output 

Code 

f(x) 
x 
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Properties 

Totally self-checking (TSC) goal 

Faults must be detected when they produce the first 

erroneous output 

Fault secure (FS) 

Faults are detected or do not propagate to outputs 

Self-Testing (ST) 

Every fault can be detected with at least one input 

Avoid fault accumulation 
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Problem 

Design strategies for self-

checking circuits well-known 

But: synthesis may destroy 

self-checking properties,  

e.g. by logic sharing 

CUT 
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c(y) 
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c(y)’ 

Error 
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Problem 

Design strategies for self-

checking circuits well-known 

But: synthesis may destroy 

self-checking properties,  
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Consequences 

Analysis of circuit robustness is required to 

check robustness properties after synthesis 

identify critical nodes / regions 

compare different circuit implementations 
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Formal Robustness Checking 

[G. Fey et al. 2008, 2009]  

 N faults 
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ATPG-Based Analysis 

Reuse efficient tools for 

manufacturing test 

Automatic Test Pattern 

Generation (ATPG) can 

Generate test patterns 

Identify redundant faults 

CUT 

Testin 

Testout 
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Example: Self-Testability  

Self-testable = every fault 

is detectable 

Use test bench to 

constrain ATPG 

Only input codes as 

patterns 

Detection only for non 

code outputs 

CUT 

Code-Generator 

Testin 

Code-Check 

Testout 
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Strongly Fault-Secure Circuits (SFS) 

Discussed so far 

Fault-secure (FS) 

Self-testing (ST) Avoid fault accumulation 

Secure fault accumulation Strongly fault-secure (SFS)  

Circuit is SFS w.r.t. fault set F: 

For all f in F  

ST and FS w.r.t. {f} or 

FS for {f} and SFS for all sequences {<f, g>} 
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Challenges  

Multiple fault analysis required 

How to compare circuits which are not 100% SFS? 
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Iterative Robustness Grading 

Classify multiple fault f as  

insecure (!FS) 

secure (FS & ST) or 

unknown (else) 

Study {f} F, if fault is unknown 

At each iteration compute upper and lower bounds  
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Outputs 

Input 

Multiple Fault Analysis 

Unconstrained multiple fault analysis: 

Rules to determine detectability of 

multiple faults from properties of single 

faults 

E.g. Faults f and g with disjoint output 

cones:  

DT(<f, g>) = DT(f) or DT(g) 

f g 
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Problem 

Rules cannot be directly applied, new code specific 

rules are applied 

Example: dual-rail circuit 

o 

o‘ 

i1 

i1‘ 

i2 

i2‘ 
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Experimental Results 

Unordered input and output encoding  & inverter-free 

implementation 

Parity output encoding 

Thread-parallel SAT-based ATPG tool TIGUAN 

(Freiburg) 
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Unordered Input and Output Coding 

Lower Bound 

Upper Bound 

Weighted LB 

Weighted UB 

% SFS (single faults) 
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Parity Output Coding 

% SFS (single faults) 

Lower Bound 

Upper Bound 

Weighted LB 

Weighted UB 
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Precision for Single and Double Faults 

Precision 

Precision (weighted bounds) 

C17    C432   C499    C880  C1355  C1908 C2670 C3540 C5315 C6288 C7552 
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Run Time for Double Faults (Seconds) 

Advanced Multiple Fault Analysis 

Standard 
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Example: Triple Modular Redundancy 

Can compensate both 

permanent and transient 

faults 

Used both for yield and 

reliability improvement 

M1 
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O 
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E 
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i o 
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Yield of a TMR System 

i faults occur i faults tolerated 
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Fault Tolerance? 

perfect  

TMR 

still tolerates  

certain faults 

error detection 

still possible 

working 
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“Fault Tolerant” Yield 

Necessary:  

refined yield estimation o1 

o4 

o2 

o3 
i2 

i1 

i3 

f1 

f2 
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k additional faults tolerated 
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Example b13 

Y
FT(2) lower bound 

YFT(2) upper bound 

TMR upper bound 

TM
R lower bound 

Single m
odule 

defect density in defects/gate defect density in defects/gate 
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Quality Binning 

Enhanced manufacturing 

test must classify chips 

according to quality levels 

Two steps 

“Functional” Test: Go/NoGo 

Diagnostic Test with DfT 

Reveals “functionally 

redundant” faults 

Critical faults must be 

distinguished from tolerable 

faults 
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DFG-Project RealTest 

Topics  

Variation-Aware Testing 

Design and Test of Robust Systems  

Partners  

IIS-EAS Dresden (Straube, Vermeiren), U. Freiburg 

(Becker), U. Stuttgart (Wunderlich), U. Paderborn 

(Hellebrand), U. Passau (Polian) 

Industrial Board  

Mentor Graphics Hamburg, Infineon München 
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Conclusions 

Soft errors and parameter variations require a robust 

system design 

Robust circuit design comes along with new 

challenges in 

design validation/verification 

yield estimation (traditional vs. “fault tolerant yield”) 

testing (pass/fail vs. “quality binning”) 


